Please select your home edition
Edition
A+T Instruments 2024 Leaderboard

Knowing your batteries - Final Part 6, Some Procedures

by Larry Janke on 3 Jan 2010
Getting to know your batteries SW
This is the sixth and final part of a series by http://www.semarine.com/store/home.php!Larry_Janke from Southeast Marine Services. This week he talks about some procedures - determining appropriate absorption time settings for charging flooded lead acid batteries and for Equalisation

The most common causes of battery undercharging are:

1. Improper charging voltages

2. Low temperature

3. Inadequate absorption voltage duration







The following tools are required:
1. An accurate float hydrometer, one that reads in numbers, not floating balls or a swinging needle,
or
2. A refractometer and a glass thermometer which can be immersed in the electrolyte with a scale sufficient to cover expected temperature ranges.

The following formula will allow calculation of approximate absorption time.

H = ((C x 0.25 x 1.15) / R) x 2

R= Available charge rate.
C = battery capacity in Amp Hours at 20 Hour rate.
H = Hours at absorption voltage to full charge.
For example: If R =110 amps, C= 820 Amp Hours
H= ((820x0.25x1.5)/110) x 2 H=4.29 hours
(Courtesy Fred King P.E.)

To further refine absorption voltage duration for a given battery bank some experimentation is necessary. Assuming the batteries are new or healthy and specific gravity is 1.265 to 1.275 at 25C. (78 F).

Proceed as follows:

1. Discharge the batteries to specific gravity 1.200 at 78 F. as corrected for the temperature of the electrolyte in each cell.

For every 10 degrees below 78 subtract 0.004 from the specific gravity value on the hydrometer or refractometer. For every 10 degrees above 78 add 0.004.
For example if the temperature is 98 degrees F. we would add 0.008 to the gravity reading If the indicated specific gravity is 1.250 the corrected specific gravity would be 1.258 1.250 + 0.008 = 1.258

To convert between Celsius and Fahrenheit temperatures, use the following formulae. C= (F-32)/1.8, F= (Cx1.8) + 32

Typical Charging Voltages


2. Record the specific gravities and temperatures.

3. Set the battery charger to an absorption output voltage of 2.4 volts per cell (VPC) 14.4 VDC for a 12 volt system. 28.8 VDC for a 24 volt system and 57.6VDC for a 48 volt system.

4. Begin charging and check the specific gravity and temperature of each cell every hour till specific gravity reaches about 1.250. Thereafter, check the specific gravity and temperature each half hour. Do not allow electrolyte temperature to exceed 48 C. or 118 F. If, electrolyte temperature reaches these values, before specific gravity reaches 1.265 as corrected for temperature, discontinue charging and allow the system to cool for 12 hours before resuming see paragraph 6 below.

5. If electrolyte temperatures remain below 48C., or 118 F. continue charging until specific gravity reaches 1.265 as corrected for temperature, continue for 1additiona hour. The total time elapsed from the beginning of the charge to this point is the appropriate time setting for the absorption stage of the charging system. This may take far longer than you would expect depending upon the size of the battery bank, the magnitude of any loads on the system during the charge cycle, the available, ambient temperature and charging current. If charging current is below 15% of battery bank capacity in amp hours at the 20 hour rate, longer absorption time will be required. Optimal battery charging rate is between 16-24% of capacity.

6. After cooling the batteries, resume charging at a lower voltage, 12 volts 0.2, 24 volts 0.4 and 48 volts 0.8. Repeat steps 4 and 5. If cell electrolyte temperatures again exceed allowable values, stop charging and call your battery manufacturers technical support for further assistance.

7. If, during steps 4 and 5, specific gravities reach a plateau and will not rise above that point, it may be necessary to perform an equalizing charge as set forth below. This may occur on all cells or only some of them.

8. Do not try to depend on the charger’s temperature sensor, it only measures one point in the system and will not provide the required information.

If ambient temperatures exceed 78F by more than 20 degrees, absorption voltage should be reduced by the amounts set forth in paragraph 6. If ambient temperature is more than 20 degrees below 78F. add the same to the charge rate. Adjustment for temperature will require some experimentation to achieve a proper balance between charge rate and temperature. Batteries below 0 C. or 32 F. will charge with great difficulty if at all.

Float Voltages:
Once the appropriate absorption time has been established, float voltages should be about 2.2 VPC at 78F. 13.2 volts for a 12 volt system, 26.4 volts for 24 volt system and 52.8 volts for a 48 volt system, at 78F. If water consumption exceeds 2-3 oz per cell every 30 days reduce float voltage in.01 volt increments till water usage stabilizes. If ambient temperature is below 50 F. (10C.) increase float voltage by .01 for each 20 degrees F below 78.

Equalization:
Equalization is the process whereby individual cells are forced to similar specific gravity values and should be performed when individual cell specific gravities after charging, are consistently below 1.265, differ by 0.015; the batteries seem sluggish or non-responsive or have been on a float charge for 90 or more days. If batteries are moderately cycled with less than 30% of capacity removed, and regularly and completely recharged to specific gravity 1.265, equalization will seldom be necessary.

Equalization is usually thought of as a periodic process where batteries are subjected to a higher than normal voltage usually about 2.58 volts per cell, 15.5 volts for a 12 volt system, 31 volts for a 24 volt system and 62 volts for a 48 volt system at a limited current for a predetermined length of time. Electrolyte temperature must be kept below 48 C. (118 F.).

This procedure will raise cell specific gravity in the least amount of time but is also somewhat injurious to the battery as a whole, but not as injurious as allowing accumulated harden lead sulphate to continue to crystallize. Some cells will be overcharged to allow those lagging behind to catch up. Also, the batteries should be isolated from all DC loads during the process as the higher voltage can damage or destroy lighting and electronic appliances. Sealed lead acid batteries, absorbed glass mat batteries (AGM) and gel batteries should never be equalized. Serious consequences such as explosion, fire and serious injury or death may result.

The tools necessary to accomplish equalization are a charger of sufficient output to accomplish the task within a reasonable period of time, 20% of battery bank capacity is a good rule a lesser charge rate will also work but more slowly. In any event charge rate should not be less than 12% of battery bank capacity. E.g. for a 400 amp hour bank charger capacity should be between 80-90 amps and so on. Also required are an accurate hydrometer or refractometer and a thermometer which reads in the 100-125F. range (45-55C.)

Discharge the battery bank to SG 1.200, record each cell specific gravity and temperature. Disconnect the negative battery cable. Allow the batteries to sit for approximately 3 hours and measure the voltage with an accurate digital meter (two digits after the decimal point). It should be about 2.03 volts per cell or 12.2 volts for a 12 volt system, 24.4 volts for a 24 volt system and 48.8 volts for a 48 volt system. Reconnect the negative cable and begin charging at 2.58 volts per cell, 15.5 volts for a 12 volt system, 31 volts for a 24 volt system and 62 volts for a 48 volt system. Some chargers and inverter chargers have an equalization option and most allow voltage adjustment.

If the charger has an equalization time setting, set it to one hour. Voltage will begin

Cyclops Marine 2023 November - FOOTERHenri-Lloyd - For the ObsessedBoat Books Australia FOOTER

Related Articles

Cruise with confidence with Doyle Sails
Doyle Sails is the sailmaker of choice for many cruising catamarans and performance multihulls Doyle Sails is the sailmaker of choice for many cruising catamarans and numerous performance multihulls worldwide, continuing to lead the fleet when it comes to reliable, durable, and easy-to-handle cruising sails.
Posted today at 12:08 am
Zhik kits out Australia's Olympic sailors
With industry-first high-performance neoprene-free wetsuit When Australia's 12 Olympic sailors take to the waters of Marseille in July this year, they'll wear the industry's first high-performance, neoprene-free wetsuits created by Sydney sailing apparel company Zhik.
Posted on 1 May
Holcim-PRB sustains bowsprit damage
Nicolas Lunven continues racing towards New York While in fifth position in The Transat CIC fleet, Team Holcim-PRB skipper Nicolas Lunven alerted his shore team on Wednesday morning that the boat's bowsprit had broken. The incident occurred overnight amid strong wind conditions.
Posted on 1 May
Momentous day for INEOS Britannia
As AC75 sets sail for first time INEOS Britannia's new race boat for the 37th America's Cup has set sail for the very first time. The British Challenger's AC75 took to the water in Barcelona with Olympic Gold medallists Sir Ben Ainslie and Giles Scott at the Helm on Wednesday 1st May.
Posted on 1 May
FlyingNikka is ready to fly again
Set to get back in the water for a new season of regattas Three appointments are planned for what is to all extents and purposes the first yacht in a new generation of full foiling regatta sailing boats, starting from the Spring Regattas held next weekend in Portofino, Liguria.
Posted on 1 May
52 Super Series PalmaVela Sailing Week Day 4
A thrilling Thursday title tussle is on the cards after no racing was possible Wednesday A thrilling Thursday title tussle is on the cards after no racing was possible Wednesday at the 52 SUPER SERIES PalmaVela Sailing Week due to very strong winds on Mallorca's world renowned Bay of Palma.
Posted on 1 May
PlanetSail Episode 31: New Cup boats
With records and drama down under It's been a big month for the America's Cup as four of the six teams unveiled their brand new AC75s. Years of development work and close to 100,000 hours of build time, there is plenty riding on each of these new launches.
Posted on 1 May
Transat CIC day 4
Charlie Dalin and Yoann Richomme continue to lead in the Atlantic On The Transat CIC solo race across the North Atlantic from Lorient to New York, there are close duels at the top of both the IMOCAs and Class40s.
Posted on 1 May
Henri-Lloyd New Arrival: Dri Fast Polo
Designed to perform for long days in the sun, on or off shore Created by Henri-Lloyd 30 years ago, the DRI FAST Polo has become an industry staple. Clean and smart, the DRI FAST Polo is an extremely comfortable, quick drying polo, with added UV protection.
Posted on 1 May
Cup Spy May 1: Kiwis call it quits
Emirates Team NZ have confirmed that they have finished sailing in NZ and are headed for Barcelona Emirates Team New Zealand has concluded their first sailing bloc, on May Day in Auckland. The America's Cup champions got away to an early start, in the face of a forecast of a freshening breeze, and finished sailing just after midday.
Posted on 1 May