Please select your home edition
Edition
PredictWind.com 2014

Deep Biosphere home to growing communities of microorganisms

by Woods Hole Oceanographic Institution on 19 Jun 2013
A cell’s DNA carries the instructions, or genes, to make the proteins that are needed to build cell structures and to perform necessary functions. To make a protein, the instructions in the DNA are transcribed, or copied, to a molecule of messenger RNA (mRNA). Other molecules in the cell then help translate those instructions to assemble the protein by stringing together more than 20 different kinds of amino acids in a specific sequence. Messenger RNA provides vital clues about the processes a cell uses to survive, because it shows which genes are being used at a given time. Katherine Joyce
According a new study by scientists at Woods Hole Oceanographic Institution (WHOI) and the University of Delaware (UD), the deep biosphere—the realm of sediments far below the seafloor—harbors a vast ecosystem of bacteria, archaea and fungi that are actively metabolizing, proliferating and moving.

'This is the first molecular evidence for active cell division in the deep biosphere,' says WHOI postdoctoral investigator Bill Orsi, who was the lead author on the study. Previous studies and models had suggested cells were alive, but whether the cells were actually dividing or not had remained elusive.

The finding of so much activity in the deep biosphere has implications for our understanding of global biogeochemical cycles, say the study’s authors.

'Cells are very abundant there, but they do not have high activity levels,' says WHOI microbial ecologist Virginia Edgcomb. 'But it’s a huge biosphere, and when you do the math, you see we’re talking about a potentially significant contribution. Carbon is being turned over, and that has important implications for models of carbon and nitrogen cycling.'

The researchers analyzed messenger RNA (mRNA) from different depths in a sediment core collected off the coast of Peru in 2002 during Leg 201 of the Ocean Drilling Program. Their work was published in Nature on June 12.

This first glimpse into the workings of the heretofore hidden ecosystem was made possible by the first successful extraction of total mRNA, or the 'metatranscriptome,' from the deep biosphere.

Messenger RNA is highly sought-after by microbial ecologists because its presence indicates that the cells that made it are alive, and because it carries the instructions for the proteins the cells are making. That gives researchers valuable information about the biochemical mechanisms and processes the organisms are using to function.

But because the metabolic rates in the deep biosphere are very low, and because mRNA is present in such small amounts—only four to 10 percent of the total RNA in most environmental samples —that extracting enough of it to analyze from deep sediments has been thought by many scientists to be impossible, says Edgcomb.

'It’s not easy,' says Orsi, who developed the extraction technique while a postdoctoral investigator in Edgcomb’s lab at WHOI. 'There’s a certain amount of banging your head against the wall before it works.'

Among the proteins they found coded for in the mRNA, many are involved in cell division, indicating that the cells that made them belong to growing, multiplying populations.

The group found mRNAs related to cell division at all depths tested, from 5 to 159 meters below the seafloor. Such messages were most abundant in zones where cell numbers were the highest, says Orsi, which indicates that the larger cell populations there were likely due to dividing cells.

The study also identified mRNAs for specific biochemical pathways that reveal much about the workings of the deep biosphere ecosystem and its significance to global cycles. The mRNAs came from bacteria and archaea, which have long been recognized as major players in the subseafloor ecosystem; and from fungi, which have recently been suggested to have an important ecological role there.

'Until recently, the fungi in deep sediments have been ignored,' says Orsi. 'The fact that fungi are metabolically active in deep sediments refines our understanding of the extent of the deep biosphere.'

Messenger RNAs coding for enzymes involved in sulfate reduction and nitrate reduction, processes cells use to generate the energy-storing molecule ATP, were also found.

'It’s been theorized that much of the energy that microbes get in this environment comes from sulfate reduction,' says Orsi. 'Basically, instead of breathing with oxygen, they ‘breathe’ with sulfate.'

Until now, models of microbial activity in deep sediments have included sulfate reduction but have not included significant use of nitrate. The current research found comparable numbers of mRNAs involved in nitrate reduction and sulfate reduction, suggesting that both processes are important in the deep biosphere community.



The researchers also found evidence that cells in the deep biosphere are eating amino acids, which are a rich source of carbon and nitrogen and can only come from other living (or recently-deceased) organisms.

'To be a reliable food source for these cells, previous studies have indicated that there probably have to be a lot of dying and/or dead cells to provide the amino acids,' says Orsi. He and his colleagues think those dead or dying cells are native to the deep biosphere rather than remnants that drifted down through the water, because most of the dead material that reaches the seafloor from above is rapidly eaten. Deeper than a few centimeters down, most of the amino acids come from cells that lived and died there.

The experiment turned up another surprise: Many of the cells in the deep biosphere are making proteins to make flagella, the whip-like 'tails' that propel them through a fluid environment. The researchers were even able to show that cells making flagellar proteins occurred in areas of the sediment where the pore spaces are large enough to permit flagella-driven locomotion. Other cells produced mRNAs related to gliding and twitching. In sum, the work provided strong evidence that cells in deep sediments are capable of a variety of kinds of movement.

'The take-home story there is, if there’s room to move, they move,' says Orsi.

The current project grew out of earlier studies in 2005 and 2008 by UD microbiologist Jennifer Biddle showing that DNA from fungi occurs in deep sediments from various sites, including the one the current samples came from.

After further work by Biddle, Edgcomb, and other colleagues in 2010 suggested the presence of active populations of living fungi in the sediments, Orsi and Edgcomb obtained funding from the Center for Dark Energy Biosphere Investigations, an NSF-funded Science and Technology Center, to further pursue the activity of fungi in the deep biosphere.

Orsi says obtaining the mRNA was just one of the technical challenges in the complex study. His extraction yielded more than one billion readable mRNA sequences.

'We had a huge matrix of information—a billion sequences and millions of bits of information associated with those,' he says. 'How do you parse out what’s important and find correlations?'

Orsi worked with Glenn Christman, a bioinformatics programmer at UD, to integrate several bioinformatics tools to address specific ecological questions. Their approach allowed for efficient and high-throughput data analysis that facilitated examination of the immense amount of data.

The Woods Hole Oceanographic Institution is a private, non-profit organization on Cape Cod, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the oceans and their interaction with the Earth as a whole, and to communicate a basic understanding of the oceans’ role in the changing global environment. For more information, please click here.

Naiad/Oracle SupplierHelm Events 660x82Bakewell-White Yacht Design

Related Articles

Fourth Blog from on board Perie Banou II
Oh no - not the coffee cup Oh no - not the coffee cup - Jon keeps us all entertained as he approaches Reunion Island. The B&G chartplotter tells me since leaving the pleasant mid Western Australian town of Carnarvon (by world standards, an isolated town), that I have sailed some 2559 NM and have 751nm to go to Le Port Reunion Island. French. Reunion is a Suburb (department) of Paris. Population 844,000.
Posted on 23 Nov
Third Blog from onboard Perie Banou II
Wind over the last week has been quiet and mild - Trade Winds from South East and South South East. It is 0830am here. 1030 in Western Australia. Windy. Rather Windy. Wind over the last week has been quiet and mild - Trade Winds from South East and South South East. Barometer 1018 to 1020 whatever they are. Last night I tapped the barometer and it sorta went oops. 1015hPa. Blimey.
Posted on 18 Nov
Second Blog from onboard Perie Banou II
This is day 13 since leaving the mid Western Australian town of Carnarvon. Remote region. Beautiful town. This is day 13 since leaving the mid Western Australian town of Carnarvon. Remote region. Beautiful town. Kept cooler by the strong south winds, which make the trees bend and grow to the north. Carnarvon is nice, especially the months of September, October, November, and December. The wind is strong. Often near gale strength, with squalls and blue skies.
Posted on 15 Nov
Mayflower 400 Crowdfunding Campaign
On 24th October a Crowdfunding campaign was started to help raise funds to build the Mayflower Autonomous Ship (MAS) On 24th October a Crowdfunding campaign was started to help raise funds to build the Mayflower Autonomous Ship (MAS) which aims to sail across the North Atlantic Ocean in 2020 in the footsteps of the Pilgrim Fathers.
Posted on 5 Nov
Predictwind - Images of Hurricane Matthew's trajectory - 0800GMT Oct 7
Hurricane Matthew is now moving up the Florida coast, having bypassed Miami. Hurricane Matthew is now moving up the Florida coast, having bypassed Miami. In these images from Predictwind's wind mapping facility we can see the path and shape of the of the hurricane as it moves past Daytona Beach moving along the US coast before coming to a stop around Jacksonville.
Posted on 7 Oct
Predictwind - Images of Hurricane Matthew's trajectory - 1
In these images from Predictwind's wind mapping facility we can see the path and shape of the of the hurricane Hurricane Matthew has wrecked havoc in the Caribbean and Haiti in particular. In these images from Predictwind's wind mapping facility we can see the path and shape of the of the hurricane as it moves towards a landing point on the US coast just north of Miami and then moves along the US coast before coming to a stop around Jacksonville. A second hurricane is aimed at Bermuda.
Posted on 6 Oct
Terry Kohler, driving force of North Technology dies at 82
Terry Kohler who purchased North Sails was the driving force behind the North Technology Group, has died aged 82 Terry Kohler who purchased North Sails from Lowell North over 30 years ago and was the driving force behind the North Technology Group, has died aged 82. With the combined company of North sails and Southern Spars, Kohler created the 'Engine above the Deck' concept which married the technology used to build the sails and spars to be designed and work as an integral unit.
Posted on 21 Sep
'Grate Art' in Hong Kong
Hong Kong charity pioneers environmental awareness through innovative storm grate installations In an effort to help Hong Kongers play their part in protecting the world’s ocean, Ocean Recovery Alliance is raising awareness through a unique public art installation called ‘Grate Art’. Hong Kong’s drainage system is one of the main sources for debris outflow into the ocean, and Ocean Recovery Alliance is tackling this problem upstream through an initiative that uses “art for awareness”.
Posted on 14 Sep
Zhik sailors win 17 sailing medals at 2016 Olympic Regatta
The 2016 Olympic games are over and what a Games they have been - Zhik sailors dominated Zhik sailors won almost 60% of the medals contested at Rio de Janeiro. It was a regatta which tested sailors and gear - with one day being the most severe conditions ever experienced at an Olympic regatta. For the Zhik team riders on the waters of Rio, four years and more of hard work and dedication have paid off for many.
Posted on 29 Aug
Rio official murdered ten months before the Olympics
Rio de Janeiro is a troubled city and a reeling Olympic host, but it will always have beautiful Guanabara Bay. Does an unsolved murder of an official in Rio in charge of cleaning up Guanabara Bay say a lot about the state of platy in the magical city? Priscilla Pereira was murdered 10 months ago and the thinking is that she was murdered in relation to her work
Posted on 31 Jul